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Part I

The Imperative for Post-Quantum Security

1 The End of an Era for Classical Cryptography

The security of digital information within cloud environments is a foundational pillar of modern
computing. Enterprises and individuals entrust vast quantities of sensitive data to cloud
storage providers like Dragbin, operating under the assumption that this data is protected from
unauthorized access. This protection is primarily achieved through cryptography, specifically the
encryption of data both in transit and at rest. To comprehend the monumental shift necessitated
by the advent of quantum computing, it is first essential to establish a firm understanding of the
classical cryptographic standards that form the bedrock of current cloud security architectures.
These standards, while robust against conventional threats, possess specific mathematical
underpinnings that are being rendered fragile by a new class of computational power.[1]

At the heart of data-at-rest protection lies symmetric encryption, where the same key is
used for both encryption and decryption. The undisputed global standard is the Advanced
Encryption Standard (AES), a block cipher operating on 128-bit data blocks with key lengths
of 128, 192, or 256 bits.[1] Its strength and efficiency have led to its ubiquitous adoption for
bulk data encryption. To provide not only confidentiality but also integrity and authenticity,
AES is typically deployed in an authenticated mode like Galois/Counter Mode (AES-GCM),
which combines encryption with a universal hash function.[1] The Dragbin platform leverages
AES-256-GCM for all symmetric data encryption, a decision that aligns with industry best
practices and provides a crucial defense against future threats.[1]

While symmetric encryption is highly efficient, it presents the challenge of key distribution.
This is solved by asymmetric, or public-key, cryptography. Systems like RSA and Elliptic Curve
Cryptography (ECC) use a mathematically linked pair of keys: a public key for encryption and
a private key for decryption.[1] In cloud systems, their computational overhead makes them
unsuitable for bulk data encryption. Instead, they are vital for key management in a hybrid
model known as ”envelope encryption.” In this model, data is encrypted with a unique symmetric
key (a Data Encryption Key, or DEK), and this DEK is then encrypted, or ”wrapped,” with the
recipient’s public key. The security of this entire model hinges on the security of the asymmetric
algorithm used to protect the DEK.[1]

The cryptographic foundations that have secured digital communications for decades are built
upon a specific class of mathematical problems considered intractable for classical computers.
However, the emergence of quantum computing represents a fundamental paradigm shift in
computational capability, introducing new algorithms that can solve these problems with alarming
efficiency. Classical computers use bits (0 or 1), whereas quantum computers use ”qubits,” which
can exist in a state of 0, 1, or a superposition of both simultaneously.[1] This property, combined
with quantum entanglement, allows quantum computers to explore a vast number of possibilities
in parallel, enabling an exponential increase in computational power for certain classes of
problems.[1]

In 1994, mathematician Peter Shor developed a quantum algorithm that targets the very
problems underpinning all widely deployed public-key cryptosystems.[1] Shor’s algorithm can
find the prime factors of large integers and solve the discrete logarithm problem (including
its elliptic curve variant) in polynomial time.[1, 9] For classical computers, these problems are
exponentially hard; a classical machine would take billions of years to factor a 2048-bit RSA
key, whereas a sufficiently powerful quantum computer could theoretically do so in a matter
of hours.[1] The implications are catastrophic and absolute. The security of RSA is based on
integer factorization, while the security of ECC and Diffie-Hellman is based on the discrete
logarithm problem. Shor’s algorithm breaks all of them completely, rendering obsolete the entire
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public-key infrastructure that underpins secure web traffic (HTTPS), digital signatures, and
blockchain technologies.[1]

Symmetric encryption, like AES, is not based on these number-theoretic problems and is
therefore not broken by Shor’s algorithm. However, it is weakened by another quantum algorithm
developed by Lov Grover. Grover’s algorithm provides a quadratic speed-up for unstructured
search problems, which includes brute-force key searches.[1] This algorithm effectively halves
the security level of a symmetric key in bits. For example, an attack on AES-128, which
requires approximately 2128 classical operations, could be performed by a quantum computer in
approximately 264 operations—a security level that is considered completely insecure.[1] The
mitigation for Grover’s algorithm is straightforward: double the key size. By using AES-256, the
post-quantum security level becomes equivalent to a classical 128-bit search (2128 operations),
which is considered secure for the foreseeable future. This provides the direct and compelling
justification for Dragbin’s architectural mandate to use AES-256 for all symmetric encryption.[1]

2 The ”Harvest Now, Decrypt Later” Threat Vector: A Present-
Day Imperative

The timeline for the arrival of a cryptographically relevant quantum computer (CRQC) is
a subject of debate, with estimates ranging from 5 to 20 years.[1] However, this does not
mean the threat is distant. A critical and immediate danger is the ”Harvest Now, Decrypt
Later” (HNDL) attack strategy. Adversaries—including nation-states and sophisticated criminal
organizations—can intercept and store large volumes of encrypted data today. This data,
currently protected by classical public-key algorithms like RSA or ECC, can be held indefinitely
until a CRQC becomes available, at which point it can be decrypted retroactively.[1]

This makes the quantum threat an urgent, present-day problem for any data that must
remain confidential for a long period. This includes government and military secrets, corporate
intellectual property, long-term financial records, and personal healthcare data.[1] Any organiza-
tion transmitting or storing such data using classical public-key cryptography is already at risk
of future exposure. This reality creates a powerful and immediate market need for solutions like
Dragbin that are secure not just against today’s threats, but against tomorrow’s as well.

The nature of these quantum threats reveals a crucial asymmetry that dictates the architec-
tural priorities for any post-quantum system. Shor’s algorithm delivers a fatal blow to public-key
cryptography, while Grover’s algorithm merely weakens symmetric-key cryptography.[1] This
distinction is paramount because modern secure systems, including the Dragbin platform, are
hybrid systems. They rely on asymmetric cryptography to securely establish a shared symmetric
key (like an AES key), which is then used for the actual data encryption. The entire security of
the encrypted data therefore hinges on the security of that initial key exchange. If an adversary
can record the key exchange today—a process protected by RSA or ECC—and use a future
quantum computer to break the asymmetric encryption, they can recover the symmetric session
key and decrypt all the data that was protected by it.

This logical chain demonstrates that simply increasing the AES key size to 256 bits, while a
necessary step to counter Grover’s algorithm, is profoundly insufficient on its own. The primary,
most urgent vulnerability lies in the key establishment mechanism. The entire cryptographic
system must be resistant to quantum attacks from the outset. A piecemeal approach is doomed
to fail; a holistic, post-quantum-first architecture, as implemented in Dragbin, is the only viable
path to ensuring long-term data confidentiality.
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Part II

The Mathematical Foundations of Dragbin’s
Security

3 The NIST Mandate and the Rise of ML-KEM

In response to the existential threat posed by quantum computing, the global cryptographic
community, led by the U.S. National Institute of Standards and Technology (NIST), has
been working for years to develop and standardize a new generation of public-key algorithms,
collectively known as Post-Quantum Cryptography (PQC). The transition to a new cryptographic
standard cannot be done haphazardly; it requires a rigorous, transparent, and collaborative
global effort. The NIST Post-Quantum Cryptography Standardization Process has been this
guiding force.[1]

In December 2016, NIST initiated a formal public process to solicit, evaluate, and standardize
one or more quantum-resistant public-key cryptographic algorithms.[1] This was not a closed-door
decision but an open, global competition, inviting submissions from cryptographers worldwide to
be subjected to intense public scrutiny and cryptanalysis.[1, 8] Each submission was evaluated
based on three main criteria: security against both classical and quantum computers; cost
and performance, including key sizes and computational efficiency; and other implementation
characteristics like flexibility and resistance to side-channel attacks.[1]

After multiple rounds of evaluation spanning over five years, NIST announced its selection
for the first PQC standards in July 2022.[1, 14] For general encryption and key establishment,
CRYSTALS-Kyber was chosen as the primary standard, lauded for its strong security and
excellent all-around performance.[1, 9] The culmination of this process was the formal publication
of FIPS 203, the Module-Lattice-Based Key-Encapsulation Mechanism (ML-KEM)
Standard, in August 2024.[15, 16, 8] This is a point of immense significance. The algorithm is
no longer just a competition finalist; it is now officially ML-KEM, a standardized cryptographic
mechanism approved for use in U.S. federal applications and poised for global adoption.[1, 19]
By building its architecture on ML-KEM, the Dragbin platform is not using an experimental or
unvetted algorithm. It is aligning with the official, forward-looking standard that has emerged
from the most rigorous PQC evaluation process in the world.

4 An In-Depth Analysis of Module-Lattice Cryptography

Unlike RSA and ECC, which are built on number theory, Dragbin’s security is built on the
geometry of high-dimensional spaces, specifically on problems related to mathematical structures
called lattices.

4.1 The Hardness of the Module Learning With Errors (MLWE) Problem

A lattice can be visualized as an infinite, regularly spaced grid of points extending in multiple
dimensions.[1] The security of lattice-based cryptography stems from the fact that certain
problems within these high-dimensional grids are computationally ”hard”—meaning no efficient
algorithm is known to solve them, even for a quantum computer.[1] Two of the most fundamental
hard problems are the Shortest Vector Problem (SVP), finding the non-zero lattice point closest
to the origin, and the Closest Vector Problem (CVP), finding the lattice point closest to a given
external point.[1]

While SVP and CVP are foundational, modern lattice-based cryptosystems like that used
in Dragbin are more directly based on a related problem called Learning with Errors (LWE),
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introduced by Oded Regev in 2005.[1] The LWE problem can be understood as trying to solve a
system of linear equations that has been slightly perturbed by random noise.[1, 10] Formally,
the LWE problem asks to distinguish between two types of distributions. The first is a series of
samples of the form (a, b), where a is a random vector and b is calculated as:

b = A · s+ e

Here, A is a known public matrix, s is a secret vector, and e is a small, random ”error” or
”noise” vector, with all calculations performed modulo an integer q. The second distribution
consists of uniformly random samples (a, u).[1, 30] Without the error vector e, solving for s
would be a simple matter of linear algebra. However, the addition of the small, random noise
makes the problem computationally intractable.[1] The most crucial property of LWE is its
provable security. Regev showed that solving the average-case LWE problem is at least as hard
as solving worst-case instances of hard lattice problems like SVP.[1, 23] This powerful result
means that if an adversary could break a cryptosystem based on LWE, they would also have
solved a fundamental mathematical problem that has resisted decades of attempts by the world’s
best mathematicians and computer scientists.

To improve the performance of LWE-based schemes, more structured variants were developed.
Ring-LWE (RLWE) operates on polynomials instead of vectors of integers, allowing for more
compact keys and faster computations.[1, 10] The Module-LWE (MLWE) problem, which forms
the direct mathematical foundation for Dragbin’s cryptography, is a generalization that sits
between unstructured LWE and the highly structured RLWE. In MLWE, the elements are
vectors of polynomials, called ”modules”.[1, 28] This approach provides a flexible framework
that balances the extreme efficiency of RLWE with more conservative security assumptions,
making it an ideal foundation for a robust and performant standard like ML-KEM.[1]

4.2 Mathematical Preliminaries: The Polynomial Ring Rq and Parameter
Selection

All computations in Dragbin’s ML-KEM implementation take place within a specific algebraic
structure, the polynomial ring Rq = Zq[X]/(Xn + 1).[1, 28] For all standardized ML-KEM
parameter sets, the polynomial degree is fixed at n = 256, and the prime modulus is q =
3329.[1, 16] This means all elements are polynomials of degree less than 256, with coefficients
that are integers modulo 3329. The relation X256 ≡ −1 (mod q) is used to keep the polynomial
degree from exceeding 255 during multiplication.[1]

The generation of random elements is critical to security. The large public matrix A is
generated by sampling its polynomial coefficients pseudo-randomly from a uniform distribution
over Zq.[1] However, the secret keys and error vectors must be ”small” for the scheme to
work correctly. Their coefficients are not sampled uniformly but from a Centered Binomial
Distribution (CBD). This is a discrete distribution with a small variance, ensuring that the
resulting polynomials have small coefficients, which is essential for error correction during
decryption.[1, 8]

4.3 The Number-Theoretic Transform (NTT): High-Performance Cryptogra-
phy in Dragbin

”Schoolbook” polynomial multiplication is computationally expensive, with a complexity of
O(n2). To achieve the high performance required for a seamless user experience in Dragbin, the
ML-KEM implementation uses the Number-Theoretic Transform (NTT), an analogue of the
Fast Fourier Transform (FFT) for finite fields.[1, 29] The NTT transforms polynomials from
their standard coefficient representation into a different domain where multiplication becomes a
simple, element-wise operation with a complexity of only O(n). An inverse NTT then transforms
the result back. This reduces the overall complexity of polynomial multiplication to a highly
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efficient O(n log n), dramatically speeding up the core matrix-vector multiplications in the
algorithm.[17, 29]

The choice of the modulus q = 3329 is not arbitrary but a deliberate and sophisticated
engineering trade-off that is deeply connected to the requirements of the NTT. During the
NIST standardization process, the original CRYSTALS-Kyber submission used a larger modulus,
q = 7681, and employed public-key compression to reduce bandwidth.[19] However, NIST
expressed concerns about the security proof for the compressed-key variant.[17, 19] To alleviate
these concerns, the designers removed public-key compression in the second-round submission.
This change, while strengthening the security proof, had the side effect of increasing the size of
public keys.[17]

To counteract this, the designers chose a smaller modulus, reducing q from 7681 to 3329. A
smaller modulus means that each polynomial coefficient can be represented with fewer bits, which
in turn reduces the overall size of the public key, balancing the effect of removing compression.[17]
This choice was not made in a vacuum. For an efficient, Cooley-Tukey style NTT to operate on
polynomials in the ring Rq = Zq[X]/(X256 + 1), the modulus q must be a prime that contains
a primitive 256th root of unity.[16] The value q = 3329 is a prime that satisfies these precise
mathematical constraints, allowing for the use of an efficient NTT while achieving the desired
key sizes. This reveals a deep connection between the requirements of formal security proofs,
practical performance goals, and the underlying mathematical machinery. Dragbin’s use of these
standardized parameters is therefore a reflection of a highly optimized and carefully considered
cryptographic design.

5 Algorithmic Deep Dive into ML-KEM (FIPS 203) in Dragbin

ML-KEM is a Key Encapsulation Mechanism (KEM), a type of public-key cryptosystem designed
to establish a shared secret. The process involves three algorithms: KeyGen, Encapsulate, and
Decapsulate.[1, 18] An attacker who intercepts the ciphertext generated by Encapsulate cannot
determine the shared secret without the private key. This shared secret is then used as a key for
a highly efficient symmetric cipher, like AES-256-GCM, to encrypt the actual data within the
Dragbin platform.[1]

FIPS 203 specifies three parameter sets, offering increasing levels of security at the cost of
larger key/ciphertext sizes and slightly reduced performance.[1, 19] Dragbin recommends and
defaults to ML-KEM-768 for most applications, as it comfortably exceeds the 128-bit security
threshold against all known classical and quantum attacks, providing a strong guarantee for
long-term data security.[32]

Table 1: Comparison of ML-KEM (FIPS 203) Parameter Sets in Dragbin

Feature ML-KEM-512 ML-KEM-768 ML-KEM-1024

NIST Security Level 1 3 5
Equivalent Classical Security AES-128 AES-192 AES-256
Public Key Size (bytes) 800 1184 1568
Secret/Decapsulation Key Size (bytes) 1632 2400 3168
Ciphertext Size (bytes) 768 1088 1568
Shared Secret Size (bytes) 32 32 32

Table 2: *
Data sourced from FIPS 203 specifications.[36] Dragbin’s recommended parameter set is

ML-KEM-768.

The following is a mathematical walkthrough of the core ML-KEM algorithms as implemented
in Dragbin. For efficiency, many operations are performed in the NTT domain.
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MLKEM.KeyGen()

1. Seeding: The process begins with a cryptographically secure random 64-byte seed, which
is split into a 32-byte seed ρ and a 32-byte seed for noise generation.

2. Generate Public Matrix A: The seed ρ is used with an extendable-output function
(SHAKE-128) to deterministically generate the coefficients of the public matrix A. For
efficiency, A is generated directly in its NTT representation, Â.[17, 30]

3. Generate Secrets: The secret vector s and an error vector e are generated by sampling
their polynomial coefficients from the Centered Binomial Distribution (CBD).[16]

4. Compute Public Vector t: The second part of the public key, the vector t, is computed
as t = A · s+ e. This is the core MLWE instance. In practice, this is computed in the
NTT domain for speed: t̂ = Â ◦ ŝ+ ê, where ◦ denotes element-wise multiplication.[1]

5. Output Keys: The public key pk consists of the packed (compressed) vector t and the
seed ρ. The private key sk is the packed secret vector s, along with other values needed
for the Fujisaki-Okamoto transform.

MLKEM.Encapsulate(pk)

1. Generate Implicit Message: Generate a random 32-byte value, m. This m is the value
that will be encapsulated.

2. Derive Seeds: Hash m and the public key pk to derive new seeds for generating ephemeral
secrets.

3. Generate Ephemeral Secrets: Use the derived seeds to sample an ephemeral secret
vector r and error vectors e1 and e2 from the CBD.

4. Compute Ciphertext: The ciphertext c consists of two parts, u and v:

u = NTT−1(ÂT ◦NTT(r)) + e1

v = NTT−1(̂tT ◦NTT(r)) + e2 +Decompress(Encode(m, 1), 1)

5. Output Ciphertext and Shared Secret: The final ciphertext is a packed and com-
pressed version of (u, v). The final shared secret, K, is derived by hashing m and the
ciphertext c.

MLKEM.Decapsulate(sk, c)

1. Unpack: The recipient receives the ciphertext c = (u, v) and unpacks/decompresses it.
They also have their private key s.

2. Compute Message: The core of decapsulation is to compute the expression v −
NTT−1(NTT(s)T ◦ NTT(u)). By substituting the definitions of v and u from the en-
capsulation step, we can see how the secret terms cancel out. Let the computed message
be m′:

m′ = v − sT · u

Substitute the definitions of v and u:

m′ = (tT · r+ e2 +Decompress(Encode(m, 1), 1))− sT · (AT · r+ e1)
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Now substitute t = A · s+ e:

m′ = ((A · s+ e)T · r+ e2 +Decompress(Encode(m, 1), 1))− sTAT r− sTe1

Using the identity (XY)T = YTXT , we get (A · s)T = sTAT :

m′ = (sTAT r+ eT r+ e2 +Decompress(Encode(m, 1), 1))− sTAT r− sTe1

The sTAT r terms cancel, leaving:

m′ = Decompress(Encode(m, 1), 1) + (eT r+ e2 − sTe1)

3. Recover Message: The result m′ is the original encoded message plus a combination of
small error terms. Because all the secret and error polynomials (s, e, r, e1, e2) have small
coefficients, this combined error is also small. A rounding function applied to m′ will map
it back to the original message m with very high probability.[1, 8]

4. Derive Shared Secret: The recipient now re-computes the shared secret K by hashing
the recovered message and the ciphertext c, arriving at the exact same value as the sender.
The full ML-KEM specification includes a re-encryption check at this stage to achieve
IND-CCA2 security, which is detailed in the next section.

Table 3: Performance Comparison of Cryptographic Key Exchange Mechanisms
Algorithm Security Level KeyGen (Cycles) Encaps/Encrypt (Cycles) Decaps/Decrypt (Cycles)

ML-KEM-768 (Dragbin) NIST Level 3 ∼53,000 ∼68,000 ∼53,000
ECC (SECP384R1) ∼192-bit Classical ∼13,600,000 ∼15,200,000 ∼13,600,000
RSA-7680 ∼192-bit Classical ∼1,200,000,000 ∼5,200,000 ∼850,000,000

Table 4: *
Performance data synthesized from academic benchmarks on modern x86 64

architectures.[9, 32, 37] Cycle counts are approximate and vary by implementation and platform.

6 The Security Proof of Dragbin’s Key Encapsulation

6.1 Security Reduction: From ML-KEM’s Security to the Hardness of MLWE

The foundational security guarantee for Dragbin’s key encapsulation rests on a formal proof
known as a security reduction. This proof establishes a direct relationship between the security
of the implemented cryptosystem and the hardness of the underlying Module Learning With
Errors (MLWE) problem. The reduction demonstrates the following logical implication: if a
computationally bounded adversary could break the security of the cryptosystem (e.g., distinguish
a real encapsulated key from a random one), then that adversary could be used as a subroutine
to construct an efficient algorithm that solves the underlying hard MLWE problem.[23, 38]

Since the MLWE problem is a variant of LWE, which is believed to be computationally
intractable even for large-scale quantum computers, we gain strong confidence that the cryp-
tosystem itself is secure. This is one of the most powerful properties of modern lattice-based
cryptography; its security is not merely asserted but is provably linked to the hardness of a
fundamental mathematical problem that has withstood years of intense cryptanalysis.[23] The
security levels defined by NIST for ML-KEM-512, 768, and 1024 are derived from concrete
estimates of the computational resources required to solve the MLWE problem for those specific
parameters.[39]

9



6.2 Achieving IND-CCA2 Security: Dragbin’s Implementation of the Fujisaki-
Okamoto (FO) Transform

The security reduction described above proves Indistinguishability under Chosen-Plaintext
Attack (IND-CPA). This means an adversary who can only observe ciphertexts cannot learn
anything about the plaintext. While essential, this is not sufficient for real-world applications
where adversaries may be active participants who can manipulate data and observe the system’s
reactions. For a production system like Dragbin, a stronger guarantee is required: Indistinguisha-
bility under Adaptive Chosen-Ciphertext Attack (IND-CCA2). This ensures security even if an
attacker can submit arbitrary ciphertexts to a decryption oracle and observe the results.[19, 31]

Dragbin achieves this higher level of security by applying a variant of the Fujisaki-Okamoto
(FO) transform to the base IND-CPA secure scheme.[1, ?, 28] The base MLWE encryption
scheme is inherently malleable, meaning an attacker could potentially modify a ciphertext in
a predictable way that alters the decrypted plaintext without knowing the private key. The
FO transform is a generic construction designed to eliminate this weakness and ”upgrade” the
security of the scheme.

The transform, as implemented in Dragbin’s ML-KEM, works as follows:

1. Key Derivation: During the encapsulation process, the final shared secret key (K) is not
the encapsulated message (m) itself. Instead, K is derived by applying a cryptographic
hash function to both m and the full ciphertext c. Similarly, the ephemeral secrets used
during encapsulation are derived by hashing m and the public key.[?]

2. Re-encryption Check: The most critical step occurs during decapsulation. After
the recipient uses their private key to recover the potential message (m′), they do not
immediately accept it. Instead, the Dragbin client performs an internal re-encryption
step. It uses the public key and the recovered m′ to re-compute what the ciphertext
should have been, generating a temporary ciphertext c′. It then performs a constant-time
comparison to check if this re-computed c′ is identical to the ciphertext c that was actually
received.[1, 29]

3. Implicit Rejection: If the comparison c′ == c succeeds, it provides cryptographic
assurance that the ciphertext was not tampered with, and the decapsulation is considered
valid. The shared secret K is then derived and returned. If the comparison fails, it indicates
that the ciphertext is invalid (likely manipulated by an attacker). In this case, the process
aborts and returns a fixed, predetermined failure value, revealing no information about
why the decryption failed.[1]

The security of this transformation for ML-KEM is not just theoretical; it has been subjected to
formal verification using machine-checked proof assistants like EasyCrypt, providing the highest
possible level of assurance in its correctness and security.[40]

Part III

The Dragbin Architecture: Security by
Design

7 The Zero-Trust, End-to-End Encrypted Framework

The Dragbin platform is architected upon a foundational principle of zero-trust, end-to-end
encryption. This design philosophy acknowledges a fundamental reality of cloud computing:
while a cloud provider can offer robust infrastructure-level security, true data confidentiality
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can only be guaranteed if the provider themselves has no ability to access the customer’s data.
Dragbin’s architecture is deliberately engineered to achieve this state.[1]

By implementing all cryptographic operations on the client-side, Dragbin ensures that user
data is encrypted on the user’s device before it is ever transmitted to Dragbin’s servers. The
ML-KEM private keys required for decryption never leave the user’s device in a plaintext state.
This model fundamentally shifts the locus of control and trust. The Dragbin service is removed
from the trusted computing base for data confidentiality, transforming it from a custodian of
data into a secure, zero-knowledge synchronizer of encrypted bytes. This provides a verifiable,
user-controlled privacy guarantee that is fundamentally superior to server-side encryption models,
where the provider ultimately manages the keys and could be compelled to use them.[1]

8 A Step-by-Step Workflow Analysis of the Dragbin Platform

A detailed examination of the cryptographic workflow within the Dragbin application reveals a
sequence of operations designed to maintain this zero-trust guarantee at every stage.

1. User Registration and Key Generation: When a new user registers with Dragbin, a
unique 16-byte cryptographic salt is generated on the client. The user’s chosen password,
combined with this salt, is processed by the Argon2id key derivation function to produce a
strong userKey. Simultaneously, the client generates a new ML-KEM-768 key pair. The
ML-KEM private key is then immediately encrypted using AES-256-GCM with the derived
userKey. This encrypted private key, along with the salt and initialization vector (IV), is
stored locally using the browser’s Web Cryptography API, which ensures the key material
is non-extractable. Only the non-sensitive ML-KEM public key is sent to the Dragbin
server to be associated with the user’s account.

2. File Encryption and Upload: To upload a file, the Dragbin client generates a unique,
per-file 32-byte sessionKey. The file is encrypted locally in chunks using AES-256-GCM
with this sessionKey, where each chunk receives its own unique IV for added security.
This sessionKey is then encapsulated using the user’s own ML-KEM public key. This
self-encapsulation ensures that only the user can later decapsulate the key needed to
decrypt their file. The encrypted file chunks and the encapsulated sessionKey are then
uploaded to Dragbin’s storage infrastructure.

3. Secure File Sharing: To share a file with another Dragbin user, the data owner’s client
requests the recipient’s public key certificate from the Dragbin server. The client first
verifies the certificate’s digital signature using the Dragbin server’s hardcoded public
signing key. If the signature is valid, the client has cryptographic proof of the key’s
authenticity. It then extracts the recipient’s ML-KEM public key from the certificate and
performs a new encapsulation operation, wrapping the file’s original sessionKey for the
recipient. This newly encapsulated key is added to the file’s metadata on the server. This
process maintains the end-to-end encryption guarantee, as the server never has access to
any plaintext keys.

4. Recipient Access and Decryption: When a recipient wishes to access a shared file, they
first log in, which re-derives their userKey via Argon2id and unlocks their non-extractable
ML-KEM private key. The client downloads the encrypted file’s metadata and uses the
private key to decapsulate their specific encapsulated sessionKey. With the plaintext
sessionKey now in memory, the client can download the encrypted file chunks and decrypt
them one by one, reassembling the original file locally.
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9 Dragbin’s Multi-Layered Defense Against Modern Threats

9.1 Fortifying the Client: Mitigating Offline Attacks with Argon2id and
Non-Extractable Web Crypto Keys

First, Dragbin has replaced legacy password-based key derivation functions like PBKDF2 with
Argon2id. PBKDF2’s security relies solely on computational expense, making it vulnerable
to massive parallelization on specialized hardware like GPUs.[1] Argon2id, the winner of the
2015 Password Hashing Competition, is designed to be memory-hard. It requires a significant
amount of RAM to execute, which provides powerful resistance against GPU- and ASIC-based
attacks, as these specialized chips have many processing cores but very limited RAM per core.[1]
This forces an attacker to spend orders of magnitude more time and money to crack a password
compared to PBKDF2, making offline attacks economically infeasible for all but the weakest
passwords.[1]

Second, Dragbin leverages the Web Cryptography API’s non-extractable key storage.
When keys, such as the userKey derived from the password or the decrypted ML-KEM private
key, are imported into the browser’s crypto module with the extractable: false flag, their
raw key bytes are managed by the browser’s underlying cryptographic engine and are inaccessible
to the JavaScript runtime.[1] Even if an attacker achieves a full Cross-Site Scripting (XSS)
compromise, they can abuse the keys within that session but cannot steal the raw key material
needed for an offline brute-force attack. This fundamentally mitigates the primary threat,
dramatically reducing the attack surface from the entire internet to the single, compromised
browser session.[1]

9.2 Authenticating Identity: Thwarting Man-in-the-Middle Attacks with an
Integrated Public Key Infrastructure (PKI)

A fundamental requirement for any secure public-key system is authentication: parties must have
a way to verify that a public key truly belongs to the person they believe it does. Without this,
the system is vulnerable to Man-in-the-Middle (MITM) attacks, where an adversary intercepts a
public key request and substitutes their own key, silently decrypting all future communications.[1]

To neutralize this threat, Dragbin implements a lightweight, self-contained Public Key
Infrastructure (PKI) where the Dragbin server acts as the central trust anchor. The server
operates its own single-level Certificate Authority (CA), possessing a long-term PQC signing key
pair (e.g., using ML-DSA, the signature algorithm standardized as FIPS 204 that complements
ML-KEM). This private signing key is protected with the utmost security within Dragbin’s
infrastructure, while the public signing key is hardcoded into the client application.[1]

When a new user registers and uploads their ML-KEM public key, the server generates a
simple digital certificate containing the user’s identity, their public key, and a validity period.
The server then uses its private signing key to create a digital signature over this certificate.
When another user requests this public key for sharing, the server sends the full certificate. The
receiving client verifies the signature using the server’s well-known public signing key. A valid
signature provides cryptographic proof that the public key is authentic and was issued by the
trusted Dragbin server. This establishes a clear chain of trust that completely defeats MITM
attacks.[1]

9.3 Enforcing Access Control: Achieving Immediate and Cryptographically-
Enforced Revocation with Proxy Re-Encryption (PRE)

A secure system requires access revocation to be immediate, cryptographically enforced, and
practical for the user. Simple revocation models, such as removing a user’s key from a file’s
metadata, are insufficient. This ”soft” revocation does not invalidate access for a user who
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has already downloaded the encrypted file and the necessary keys; they retain the ability to
decrypt that data indefinitely.[1] The only alternative in such a model is for the data owner to
download, re-encrypt with a new key, and re-upload the entire file—a burdensome process that
is impractical for large files.[1]

Dragbin solves this challenge by implementing an advanced cryptographic primitive known
as Proxy Re-Encryption (PRE). PRE allows a semi-trusted third party (the Dragbin server)
to transform a ciphertext encrypted under one key into a ciphertext that can be decrypted by a
different key, without the proxy being able to learn the plaintext content.[1] This enables secure
delegation of decryption rights, which is the foundation of a robust access control and revocation
system.

The PRE workflow in Dragbin operates as follows:

1. Initial Encryption: When a data owner, Alice, uploads a file, the sessionKey is
encapsulated with her own public key.

2. Delegating Access (Sharing): To share the file with Bob, Alice uses her private key
and Bob’s public key to compute a special re-encryption key, rkA→B. This key is sent
to the Dragbin server and associated with the file and Bob’s user ID.

3. Recipient Access: When Bob requests the file, the server uses the re-encryption key
rkA→B to transform the ciphertext encapsulated for Alice into a new ciphertext that is
now decryptable by Bob’s private key. The server sends this new ciphertext to Bob, who
can then decrypt it to recover the sessionKey. The crucial property is that the server
learns nothing about the sessionKey during this transformation.[1]

4. Revoking Access: To revoke Bob’s access, Alice sends a single, simple instruction to
the server: delete the re-encryption key rkA→B. The server deletes the key. From that
moment on, the server no longer has the cryptographic means to transform ciphertexts for
Bob. His access is immediately and irrevocably cut off at the server level.[1]

Table 5: Comparison of Access Revocation Models

Feature Legacy Method (Metadata
Key Removal)

Dragbin’s Method (PRE)

Revocation Im-
mediacy

Not immediate. Access persists
for already-downloaded data.

Immediate. Access is crypto-
graphically cut off instantly.

Security Guaran-
tee

Weak. A revoked user can still
decrypt old data.

Strong. A revoked user cannot
decrypt any data post-revocation.

Data Owner Bur-
den

High. Requires manual download
and re-encryption for true revoca-
tion.

Minimal. A single, lightweight
API call to the server.

Computational
Overhead

Low for soft revoke; very high for
re-encryption (client-side).

Moderate (server-side). The
proxy performs a re-encryption op-
eration.

Table 6: *
Analysis based on the architectural comparison in.[1]
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Part IV

Conclusion: The Dragbin Standard for
Secure Cloud Storage

The Dragbin quantum-resistant cloud storage platform is built upon a commendable and forward-
thinking cryptographic foundation. The selection of CRYSTALS-Kyber, now standardized as
FIPS 203 ML-KEM, for key encapsulation and AES-256-GCM for data encryption aligns perfectly
with the recommendations of NIST and the global cryptographic community, positioning Dragbin
at the vanguard of the post-quantum transition. The core architectural pattern of client-side,
end-to-end encryption correctly addresses the fundamental trust issues inherent in public cloud
storage.

By undertaking these enhancements, Dragbin has moved beyond a proof-of-concept to become
a benchmark for next-generation secure cloud storage. The platform’s security rests on three
foundational pillars:

1. Quantum-Resistant by Default: At its core, Dragbin uses the FIPS 203 ML-KEM
standard for all key establishment.

2. Hardened Against Classical Attacks: Dragbin implements a suite of advanced defenses
including Argon2id, non-extractable keys, a robust PKI, and Proxy Re-Encryption.

3. Verifiable Zero-Trust Model: The entire architecture is built on the principle of
user-controlled, end-to-end encryption. Dragbin has zero access to user data.

The resulting platform offers its users a truly comprehensive and verifiable security guarantee.
Dragbin represents the new standard for secure, private, and future-proof cloud storage, providing
a trusted environment for the world’s most sensitive data.
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